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ABSTRACT
We present the OCamIL compiler for Objective Caml that targets .NET. Our experiment consists of adding a

new back-end to the INRIA Objective Caml compiler that generates CIL bytecode. Among all the advantages

of code reuse, ensuring compatibility while keeping all the expressiveness of the original language is particularly

interesting. This allowed us to bootstrap the OCamIL compiler as a .NET component and build an interactive

loop (toplevel) which may be embedded within .NET applications. This work deals with typing issues because

OCamIL needs to translate an untyped intermediate language into a typed bytecode. We discuss various

intermediate language retyping techniques and their consequences on performances. We also present applications

of interoperability of Objective Caml and C# components.

1. INTRODUCTION
The .NET [1] platform is often presented as a uni-

versal framework that can host software components

developed in numerous languages. It offers a Com-

mon Type System (CTS) and a runtime environment

CLR (Common Language Runtime) built on a byte-

code machine. By assuming compliance to the CTS

type system, components interoperate safely. This

has motivated the adaptation of various languages,

such as C#, J#, A#, Eiffel, Scheme, Sml, F#, P#

or Mercury.

Even though the main implementation of .NET runs

on Windows, some Open Source projects provide im-

plementations for BSD Unix and Windows (Rotor [2]
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Universit́e Pierre et Marie Curie (Paris 6)
4 place Jussieu, 75005 Paris, France.
Email: Emmanuel.Chailloux@pps.jussieu.fr
‡ Esterel technologies,
679 Av Julien Lef̀ebvre, 06270, Villeneuve- Loubet, France
Email: Bruno.Pagano@esterel-technologies.com

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
.NET Technologies’2005 conference proceedings,

ISBN 80-86943-01-1

c© UNION Agency - Science Press, Plzen, Czech

and Linux (Mono [3]). That reminds of Java’s motto:

“Compile once, run everywhere”. There is a hope

for a safe and efficient multi-language platform with

a single runtime, running on numerous systems. We

experiment the integration of a full-fledged functional

language in this environment by writing a .NET com-

piler for the INRIA Objective Caml [4] (thereafter

shortened as O’Caml).

O’Caml is an ML dialect: it is a functional/imperative

statically typed language, featuring parametric poly-

morphism, an exception mechanism, an object layer

and parameterized modules. Its implementation in-

cludes a bytecode and a native code compiler, which

generates efficient programs.

OCamIL [5] is a project which aims at compiling O’-

Caml to the .NET environment. We believe it can

help make popular O’Caml applications. Our primary

goals are compatibility with O’Caml and interoper-

ability.

In order to help compliance with the original lan-

guage, OCamIL is developed as a new back-end of the

O’Caml compiler. This approach quickly succeeds in

producing a full-fledged compiler for the whole lan-

guage. We achieve bootstrapping as a sizeable com-

patibility test. Taking advantage of the .NET reflec-

tion API, OCamIL can dynamically emit code and

execute it, which is a useful feature to build a toplevel

interaction loop. Both compiler and toplevel can be

redistributed as .NET components. The main part of

O’Caml standard library and the O’Caml graphics,

threads and dynlink libraries have been ported. Func-



tional, imperative and object-oriented features are im-

plemented, as well as the module system (functors,

modular compilation).

Interoperability is achieved using a two-layered tech-

nique: a low-level unsafe foreign function interface

supports a high-level interfacing through O’Caml ob-

jects using an IDL approach.

We first present the relevant features of the .NET

platform from a compiler writer’s point of view, then

give an outline of the OCamIL implementation and

describe the building of the toplevel interactive loop

from the bootstrapped compiler. We then expose the

principles of OCamIL interoperability and give exam-

ples of applications. We finally discuss related work

and outline future work.

2. THE .NET PLATFORM
The .NET Common Language Runtime consists of

a typed stack-based bytecode called CIL (Common

Intermediate Language), an execution system and a

support library BCL (Base Class Library). Let us

enumerate some features of the .NET platform for

Windows developped by Microsoft:

The type system is designed around an object model

featuring single inheritance, Java-style interfaces and

exceptions. In addition to Reference Types (for heap-

allocated objects), it supports stack-allocated Value

Types (which range from basic types to complex struc-

tured types). Dedicated bytecode instructions (box

and unbox) switch between the two kinds of represen-

tation. The type system is geared towards dynamic

management: it supports run-time type tests, checked

coercions and reflection capabilities.

Safety is based on typing. Verification rules are im-

plemented in the runtime, tracking down stack incon-

sistencies and dependencies resolving errors (for in-

stance erroneous calls to foreign methods). The CIL

bytecode conforming to typing and verification con-

straints is called “managed code”. Unmanaged code

gives access to unsafe languages like C++. The run-

time environment also features a Garbage Collection

mechanism, which frees the developer from memory

management issues.

Deployment: The fundamental .NET component

is called an assembly : it is a self-contained unit of

deployment. Assemblies can be signed with a crypto-

graphic key so that the hosting computer can trust the

embedded code: this allows sharing a piece of software

by installing the assembly in the GAC (Global Assem-

bly Cache), a special assembly repository. This helps

versioning and localization management altogether.

Performances: The execution relies on a system-

atic Just In Time compilation mechanism (each method

is compiled to native code at first call). It is possible

to bypass this behavior by pre-compiling an assembly

to a native image.

The CLR provides useful features for functional lan-

guages implementations, such as tail calls. However,

closures, which are ubiquitous data structures in func-

tional languages, are not supported natively by the

CLR. The ILX extension [6] is developed to address

this issue. Parametric polymorphism is also hard to

implement efficiently, but change might be on its way

with the possible addition of Generics [7, 8] to the

forthcoming release of the CLR.

3. THE O’Caml LANGUAGE
O’Caml is a statically typed language based on a func-

tional and imperative kernel. It also integrates a class-

based object-oriented extension in its type system, for

which inheritance relation and subtyping relation for

classes are well distinguished [9]. One key feature of

the O’Caml type system is type inference. The pro-

grammer does not annotate programs with typing in-

dications: the compiler gives each expression the most

general type it can.

A class declaration defines:

• a new type abbreviation of an object type,
• a constructor function to build class instances.

An object type is characterized by the name and the

type of its methods. For instance, the following type

can be inferred for class instances which declare moveto

and toString methods:

< moveto : (int * int) -> unit;

toString : unit -> string >

At each method call site, static typing checks that

the type of the receiving instance is an object type

and that it contains the relevant method name with a

compatible type. The following example is correct if

the class point defines (or inherits) a method moveto

expecting a pair of integers as argument. Within the

O’Caml type inference, the most general types given

to objects are expressed by means of “open” types

(<..>). The function f can be used with any object

having a method moveto (’a denotes a universally

quantified type variable):

method call

let p = new point(1,1);;
p#moveto(10,2);;

functional-object style

# let f o = o # moveto (10,20);;
val f : < moveto : int * int −> ’a; . . > −> ’a



Some of the most important characteristics of the O’-

Caml object model are:

• Class declarations allow multiple inheritance and

parametric classes.

• Method overloading is not supported.

• The method binding is always delayed.

4. THE OCamIL COMPILER
Our main goal is to port O’Caml to the .NET plat-

form and be as compatible as possible with the stan-

dard INRIA implementation. Granting priority to

compliance is not an easy task because the O’Caml

language is perpetually evolving: new versions of the

standard compiler are released on a regular basis,

yielding major additions to the language. We choose

to implement OCamIL as a back-end to the standard

compiler, in order to reuse as much code as possible

and later on to prevent tiresome modifications when

upgrading to new O’Caml versions.

To be more precise: parsing, typing and first code

transformations are left to the standard O’Caml com-

piler. Our back-end gets the internal representation

Clambda1 from the compiler front-end, as sketched in

figure 1. At that stage, several code transformations

have been realised. Further steps on the ocamlopt

branch, which specialize code for specific processor

architectures, are useless to OCamIL.

We introduce a new intermediate representation called

Tlambda, the purpose of which is discussed in the fol-

lowing sections.
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Fig. 1: OCamIL inside O’Caml.

1With respect to the Lambda code which handles functional
values, Clambda explicitly manages closures and implements
direct application.

4.1 The need for types
Compiling the Clambda intermediate code to a typed

runtime is not straightforward. First, types are dis-

carded right after type-checking, therefore Clambda

does not carry types. Second, it is already designed

to take advantage of the standard O’Caml runtime

environment peculiarities. The standard O’Caml im-

plementation uses a uniform representation to deal

with parametric polymorphism. Integer values and

pointers toward heap-allocated blocks are both repre-

sented by native machine integers and distinguished

by a bit of tag. However, when compiling to CIL,

integers are typically represented by integers (a value

type) and blocks by some reference types. This even-

tually requires boxing operations on integers in order

to make them fit in the same locations as blocks. To

achieve that, type reconstruction is required on the

Clambda code.

The following table shows an example of CIL code

generation, which is incorrect because of the involved

types are ignored. The variable t refers to an array

(implemented by an array of objects because of poly-

morphism):

O’Caml code

t.(0) + 1

Clambda code

(+ (field 0 t) 1)

CIL Comments

ldloc t Pushes the local variable t on stack.

ldc.i4.0 Pushes the integer 0.

ldelem.ref Loads an array element (by reference)

(*)

ldc.i4.1 Pushes the integer 1.

add Computes addition.

At the level of the (*)-marked line, the top of the stack

holds a reference to an object whereas the instruction

add expects an integer value type.

We introduce the Tlambda code that carries types and

includes type casting operations to address this issue.

A type-aware compiler inserts an unbox instruction

at (*). The type safety property is ensured by the

front-end type checking.

4.2 Type re-inference
As sketched in the previous section, retyping Clambda

allows to compile correct code. Moreover, accurate

typing information helps to choose data representa-

tions that avoids performance penalties.

4.2.1 Methodology.
We use a retyping algorithm that infers types on the

Clambda code. In the standard O’Caml runtime, types

are all collapsed down to a uniform representation.

There is a trade-off: on one hand we need to be as



accurate as possible in order to prevent inefficiencies

(typing everything to be an “object” is an option, but

a costly one because it maximizes (un)boxing opera-

tions), and on the other hand the available informa-

tion does not allow for much accuracy. We propose

the following type grammar:

T ::= int | block | string | float

| closure | unit | any

The algorithm propagates type information from the

primitives back to the whole code. Having no other

clue on source types, there is very little to retype: the

types grammar is rather poor, and is based on the

types that can be associated with the primitives (han-

dling blocks and integers, but also floats, strings and

so on). Distinguishing integers from blocks is a first

step. Furthermore, we try to identify particular kinds

of blocks wherever possible, in order to manage them

specifically. It turns out that some instances of O’-

Caml blocks: string, float, closure and unit, being

operated on by specific primitives, can be identified

contextually. In order to handle polymorphism, the

implementation assigns a representation that inherits

from the representation of block (which denotes un-

determined blocks). The type any encompasses every

other types. It is mandatory because of parametric

polymorphism, and its typical .NET representation is

the root class Object.

This simple retyping technique only requires a slight

adjustement of Clambda code to work properly.

4.2.2 Data representation.
We translate basic types according to the following

correspondences:

O’Caml bool int float string

CTS int32 int32 float64 StringBuilder

• We use StringBuilder, not string, because O’-

Caml strings are mutable.

• Since types are determined by the way values are

used in the intermediate code, O’Caml integers

and booleans are mapped to the same representa-

tion.

Tuples, arrays, records, lists and sumtype values are

traditionally represented by means of heap-allocated,

tagged blocks (in the case of a sumtype value, the

tag is used to code the involved constructor). These

types are not distinguished by the O’Caml runtime

and are operated on by the same primitives. There-

fore they cannot be identified by type reconstruction.

They are all compiled to a common generic represen-

tation: arrays of objects (object[]), requiring boxing

operations on basic type values which are not objects.

Closures are compiled to objects inheriting from Ca-

mIL.Closure, a dedicated class that declares two meth-

ods handling application: exec implements total ap-

plication and apply: object -> object is used for

partial application. Wrapped around exec, apply re-

turns a new closure ready to expect the forthcoming

arguments, or the final result value, depending on the

number of remaining arguments. The closure’s envi-

ronment is stored in object fields.

Mapping an O’Caml class hierarchy to a .NET class

hierarchy is very tempting. Besides the theoretical

issues it raises (because of the numerous differences

between the two object models), this is also hard

to achieve because of the internal representation of

O’Caml objects: starting from the first intermedi-

ate language, objects no longer show up as objects

but merely as blocks of fields and functions. O’Caml

implements the late binding mechanism by inserting

additional code within user code (the standard O’-

Caml runtime environment was originally designed for

the core language, and does not natively support an

object layer). The OCamIL compiler processes the

corresponding blocks transparently, without knowing

they are related to objects.

The current release of the OCamIL compiler was de-

veloped according to this design. The back-end ap-

proach, using retyping techniques, quickly leads to

significant achievements.

4.3 Compatibility
Compatibility is fairly complete. The standard core

library, as well as some others (the graphics, threads

and dynlink libraries) have been successfully adapted.

Large applications have been compiled and behave

consistently with the standard implementation.

Let us mention the main differences between OCamIL

and the standard implementation. First, some as-

pects of O’Caml are left implementation-dependent.

For example the order of evaluation of function ar-

guments is not specified. The INRIA compiler and

OCamIL adopt right-to-left and left-to-right eval-

uation, respectively. Second, O’Caml provides some

partially hidden, low-level and unsafe operations on

data representations. OCamIL only emulates a part

of them (actually, what is used by the implementation

of the standard library). Third, the foreign function

interface with C is replaced with a basic interface with

CIL methods (more on this topic in subsection 5.1).

We focus on managed code until now, but interfacing

with unmanaged libraries can be addressed. Finally,

the O’Caml data marshaling format is not specified.

The OCamIL implementation rely on the BCL serial-

ization API: on one hand, this leads to incompatible

data formats and on the other hand, this provides a

safe marshaling for free.



4.4 Bootstrapping
We describe here the different steps that lead from

OCamIL sources to a bootstrapped compiler running

in the .NET framework. Like the O’Caml compiler

itself, OCamIL is written in the O’Caml language.

More than our personal preferences for O’Caml, it

is convenient to use the implementation language of

the standard INRIA compiler because we open a new

compilation branch on it.

The successive steps needed for building and boot-

strapping OCamIL are shown in figure 2. Compiling

OCamIL from sources requires the original O’Caml

bytecode compiler (ocamlc) and runtime (referred to

as µ). In the figure, mlB stands for the original O’-

Caml bytecode.
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Fig. 2: Building and bootstrapping steps

4.4.1 Building steps
(following figure 2): the hybrid compiler pre-ocamil

is compiled first. It produces CIL executables and

shared libraries from O’Caml source files, but still

runs in the standard O’Caml environment. Then we

recompile OCamIL sources using the freshly compiled

compiler. This produces ocamil, which is itself a

.NET bytecode executable file. Once this is done, we

no longer need the O’Caml system nor the pre-ocamil

compiler 2.

4.4.2 Bootstrapping steps
(following figure 2): we use the newly built compiler

to compile itself. We need two rounds to reach a fix-

point (ocamil-2 is identical to ocamil-3) because of

the slight difference of operational semantics exposed

in subsection 4.3 (regarding evaluation order). When

compiling OCamIL, it affects the ordering of code gen-

eration. For that matter, pre-ocamil and ocamil do
2Later on, the pre-ocamil compiler should not be used, be-
cause it runs in a different world than executables it produces.
As explained in subsection 4.3, the O’Caml and OCamIL data
marshaling formats are not compatible. This implies that
data marshaled by programs compiled by pre-ocamil cannot
be read back by pre-ocamil, a situation that typically hap-
pens when compiling from a marshaled abstract syntax tree
instead of a source file (as preprocessors generate), or for dy-
namic linking. This also means that libraries compiled by
pre-ocamil cannot be used by ocamil: they need to be com-
piled by ocamil itself.

not strictly behave the same, so ocamil and ocamil-2

are not strictly identical. In this case it does not af-

fect the semantics of the resulting programs but only

their code layout. The additional round fixes the mis-

match.

4.5 Toplevel Building
The OCamIL compiler and executables compiled by it

run in the CLR altogether. Using the .NET dynamic

code generation and execution features provided by

the reflection API helps building a toplevel utility

ocamiltop. A toplevel iteratively compiles O’Caml

declarations on the fly and executes them, while main-

taining a symbol table. Figure 3 displays the toplevel

components and shows the processing steps of an O’-

Caml expression.
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(5c)

5a
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Fig. 3: The toplevel engine

1) The toplevel engine consumes an O’Caml expres-

sion phrasen.

2) It uses the ocamil compiler engine (together with

a Symbol Table resolving free variables) to compile

the expression to CIL code.

3) The CIL code is written as a shared library file on

the hard disk.

4) The toplevel engine calls the BCL System.Reflec-

tion.Assembly::LoadFrom method to dynamically

load back the emitted assembly to memory.

5a) Calls to the reflection API manage to run a public

method of the assembly which was emitted at stage

2. It is a startup method for the compiled expression.

5b) The startup method first registers the bindings

defined by phrasen by accessing directly the table of

symbols used by the toplevel. 5c) The startup method

then runs the inner code of phrasen (that may refer

to previous expressions using the associations main-

tained in the table of symbols).

6) The execution flow returns to the toplevel loop that

handles output (typically by displaying computed val-

ues).



The toplevel prototype writes compiled assemblies to

disk, then reloads them back to memory. We plan

to develop a new version that directly compiles code

to memory: this allows to produce a single assembly

that grows up during the toplevel session, from which

we expect increased performance.

The toplevel tool is very useful for application devel-

opment. It also has promising applications using its

embedding capabilities.

5. INTEROPERABILITY
OCamIL interoperability capabilities are based on a

two-layered approach.

5.1 Basic Foreign Function Interface
The heart of OCamIL interoperability is a simple mech-

anism which allows to call CIL code from O’Caml

programs. It is a replacement of the original O’Caml

FFI for C code. OCamIL allows to call static methods

written in C# or in bytecode. This was widely used in

order to adapt the O’Caml standard library, replacing

the C code by calls to the .NET BCL. However, this

is limited and not type-safe: its main purpose is to

support safe, high-level communication.

5.2 O’JACARE.NET
We provide a high-level, safe interfacing of O’Caml

and C# through their object models, using an IDL

approach. We have developed a tool called O’Jaca-

ré.net that compiles IDL files and generates all nec-

essary wrappers to mix components written in both

languages. Details can be found in [10].

5.2.1 Comparing object models.
Type systems and object models can be interleaved

in many ways. There are important differences be-

tween the object models of O’Caml and C#. For in-

stance, class declarations allow multiple inheritance

and parametric classes in O’Caml but not in C#,

method overloading and class downcasting are only

supported in C# (but in O’Caml the type of self

can appear in the type of a method eventually overrid-

den in a subclass). The intersection of the two mod-

els corresponds to a simple class-based language, for

which inheritance and subtyping relations are equiva-

lent, overloading and binary methods are not allowed.

For the sake of simplicity, it does not offer multiple in-

heritance nor parametric classes. This model inspires

a basic IDL for interfacing C# and O’Caml classes.

5.2.2 Encapsulation.
In contrast to direct external calls presented above,

using O’Jacaré.net is safe and much more expres-

sive. O’Caml programs can allocate C# objects and

call instance methods. It is also possible to inherit

C# classes in O’Caml and redefine methods. Late-

binding is transparently performed between the two

languages. The other way around is also possible: li-

braries compiled by OCamIL can expose classes that

will be used in C# programs.

This requires a tricky implementation because O’-

Caml objects are no longer objects at run-time. The

mechanism that enables late-binding to run back and

forth between O’Caml and C# worlds is illustrated

in figure 4. In this example, a C# component defines

the well-known didactical classes Point and Colored-

Point that are exposed in an IDL file.

The compilation of this file generates the correspond-

ing O’Caml wrappers, allowing to allocate objects

and call methods upon the foreign C# classes as if

they were native. New O’Caml classes, such as colo-

red point ml in the figure, can inherit from them.

However, a complete and proper cross-language late-

binding mechanism cannot be implemented with such

a simple design. Let us assume that Point defines a

method toString, and that ColoredPoint both de-

fines a method getColor and overrides the definition

of toString by concatenating the results of a call

to the method getColor and a call to the method

toString of the superclass. If we redefine the getColor

method in O’Caml, and expect the toString method

to be specialized through late binding, we need to

produce an additional stub in each language: a call

to toString on colored point ml traces back to the

ColoredPoint class, which has no idea of the O’Caml

instance and thus of the redefinition of getColor.

The two stubs hold a reference to each other. The

C# stub, named ColoredPointStub, overrides each

method as a callback to the O’Caml stub callback co-

lored point and the latter defines each method as

a non-virtual call to ColoredPoint, the base-class of

the former. Following figure 4, the O’Caml class mi-

xed colored point inherits from the O’Caml stub class.

Thanks to the non-virtual call, a call to the toString

method traces back to the implementation of Colo-

redPoint Then the virtual call to getColor is late

bound to ColoredPointStub, which virtually calls the

O’Caml corresponding method on callback colored-

point, falling back on O’Caml late-binding mecha-

nism.

5.2.3 Blending two object models.
O’Jacaré.net allows to partially handle both object

models. [10] gives examples of C# objects downcast-

ing and multiple inheritance of C# classes in O’Caml.

We need the IDL glue to interoperate between O’-

Caml and C#: because of design and semantics dif-

ferences, encapsulation is needed in both ways. How-

ever, we benefit from sharing the same runtime envi-
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Fig. 4: Relationship between classes

ronment. The communication between components is

type safe and we take advantage of unified garbage

collection and thread management.

6. APPLICATIONS
Adapting O’Caml to .NET is interesting for both com-

munities. We believe it can help make popular O’-

Caml applications, and that new possibilities are of-

fered by interoperability. Let us mention a few of

them.

O’Caml is given access to new libraries. O’-

Caml programs can use libraries ranging from graph-

ical toolkits to remoting facilities. They can be dis-

tributed as applets that run inside a browser’s win-

dows. See figure 5 for an example of O’Caml applet,

that runs a raytracer (the winning entry of the ICFP

2000 programming contest). Using O’Jacaré.net,

the same O’Caml program can be given a graphical

user interface written in C#.

See also figure 6 for an O’Caml toplevel embedded in

a graphical interface written in C#.

O’Caml benefits from new tools. We can already

use .NET tools such as debuggers or profilers on OCa-

mIL programs. It is also possible to integrate the O’-

Caml language in IDE such as Visual Studio.NET.

.NET is enriched by O’Caml. It is important to

promote programming paradigms such as functional

programming. Moreover, the O’Caml object layer

can interest OO programmers and encourage them

to give O’Caml a try. O’Caml is particularly good at

tree manipulations or symbolic computations, some of

the fields where languages such as C# cannot stand

the comparison. Syntactical tools such as Camlp4

[11], which was successfully compiled by OCamIL, can

open new tracks for writing compilers, using O’Caml

as a target language. The possibility to embed an

O’Caml toplevel component in C# applications also

offers interesting perspectives.

7. RELATED WORK
The approach described for O’Jacaré.net (two run-

time environments running side by side) has also been

used in other projects.

The Haskell interpreter, Hugs98 for .NET [12], allows

.NET classes. Its implementation is based on a mech-

anism similar to O’Caml / O’Jacaré.net. At the

level of source language, it allows a basic communica-

tion with the .NET platform which allows thorough

communication to be built upon and used through

a high level language construction. Automatic code

generation with a dedicated tool is needed to achieve

it. As for execution, it provides two virtual machines

(interpreter and CLR) running simultaneously. The

Dot-Scheme [13] project implements a FFI (Foreign

Function Interface) to the .NET platform from PLT

Scheme. Here again, execution is performed by two

virtual machines. At the language level, the imple-

mentation (based on CLR introspection capabilities)

allows an easy and direct .NET classes manipulation.

The current trend is to directly produce bytecode for

either Java (cf MLj [14]), or .NET. For .NET, a lot

of works have been done :

• for SML: SML.NET [15] and MoscowML

for .NET [16];

• for O’Caml: F# [17] and OCamIL.



Fig. 5: An applet running a raytracer written in O’Caml.

The main interest to use the same runtime is to facili-

tate memory management (GC) and multi-threading.

F# and OCamIL illustrate two different views of in-

teroperability. F# conception is focused on inter-

operability. Its purpose is to manipulate the .NET

proposed object model in a functional / imperative

language similar to CamlLight. The outcome is a

new Caml dialect using .NET object model. But the

.NET object model is really far from the O’Caml ob-

ject model. The advantage is to directly manipulate

CTS types, with no additional tool and in a natural

way. It provides a comfortable programming and al-

lows an implementation as direct as possible (which

guaranties better performance).

On the other hand, the used object model is not in-

tegrated as well in the functional paradigm as the

O’Caml model. In many cases, it is mandatory to

help the type inference by giving types annotations

for CTS. Then, parametric polymorphism and row

polymorphism become a kind of interfaces polymor-

phism when .NET methods are called.

On the contrary, OCamIL does not modify the orig-

inal language. There are no new constructs coming

from the target architecture and the interoperability

is managed accross the O’Caml object model.

There are two main consequences :

• the difference between the two object models for-

bids a direct compilation from O’Caml objects to

the CTS;
• this inadequacy makes it necessary to generate

stub classes (we compile IDL files with our tool

O’Jacaré.net).

To put it shortly, F# is for the C# programmer who

wants to use functional programming, and OCamIL

is for the O’Caml programmer, who wants to take

advantage of the .NET environment without changing

his favorite language.

MLj and SML.NET join together the two approaches

by proposing the essence of SML on the Java and

.NET platforms, and integrating the C# object model

(but it is true that without object features in the orig-

inal languages there is no decision to select an ob-

ject model). MoscowML for .NET only allows static

method calls.

From the Scheme side, the Bigloo compiler allows to

compile to the JVM or the CLR runtimes. As for Dot-

Scheme, the .NET features are nicely incorporated in

the Scheme language by using special functions and

macros. The Scheme language fits well in an inter-

operability setting: its syntax is easily extensible and

its dynamic typing facilitates the integration of new

features. Dynamic typing is more in the spirit of the

Java and .NET platforms that propose many services

of instrospection.

Although Eiffel is not a functional language, its .NET

version [18] encounters similar difficulties than OCa-

mIL. The two object models have a multiple inheri-



Fig. 6: A toplevel session in a C# window, demonstrating culture-specific ordering.

tance, parametric classes and no overloading. How-

ever their techniques of compilation strongly differ.

Eiffel relies on CTS interfaces to emulate multiple in-

heritance.

8. RETYPING TECHNIQUES AND FU-
TURE WORK

For the sake of compatibility and front-end indepen-

dence, OCamIL currently adopts a back-end approach

that leads to retype an intermediate language from

scratch. We are currently developing an alternative

implementation which retrieves source types from the

O’Caml type-checking step. Let us compare the pros

and cons of each technique.

8.1 What hinders the strict back-end ap-
proach

As mentioned in subsection 4.2, the retyping tech-

nique requires the front-end to be slightly modified.

The heart of the problem are data types with non-

uniform representations such as sumtypes. Here is a

sample sumtype definition:

type t = Zero | One | Node of t

The sumtype t declares two constant constructors and

a non-constant constructor. As for the O’Caml run-

time, these are respectively represented by integers 0,

1 and a pointer to a block containing another value

of type t. This is homogeneous in the O’Caml run-

time but the retyping algorithm eventually infers two

different types, int and block, for values of type t.

Consider the following function and its compiled rep-

resentation in Clambda code:

O’Caml code Clambda code

let cut x = let cut = closure(cut):

match x with x ->

| Node n -> n if (isint x) then x

| x -> x else (field 0 x)

Type Inferred type

t -> t Sumtype -> Sumtype

The isint primitive tests the bit of tag that dis-

tinguishes integers from pointers on blocks. In or-

der to take the duplicity of the parameter x into ac-

count, the grammar of reconstructed types needs a

new item Sumtype, that represents the union of int

and block. The function cut above receives the type

Sumtype -> Sumtype. We do not want to use the

general-purpose type any here to give a chance to

Sumtype values to be mapped to a more precise and

adequate type than Object. Of course, applying cut

to constants requires boxing operations. There is

something wrong though, as the following example

reveals:

O’Caml code Clambda code

let hell a b = let hell = closure(hell):

match a with a -> b ->

| Zero if (isint a) then

(if (a != 0) then b

-> One else 1)

| _ -> b else b

Type Inferred type

t -> t -> t Sumtype -> int -> int

The type of the parameter b is problematic. Looking

at the O’Caml source code we know that a and b are

both of type t. But looking at the Clambda code, one

is tempted to claim that b is an integer! The only in-



formation that the re-typing algorithm has about b is

that its type is unifiable with int (because of the sub-

expression: if (a != 0) then b else 1). Following

the policy of being as accurate as possible, b is typed

to be an integer, and the function hell receives the

type Sumtype -> int -> int. Later on, when com-

piling an application such as hell One (Node Zero),

the retyping algorithm detects inconsistency and aborts.

In general, the algorithm cannot backtrack and give

b a correct type: the definition of hell and its appli-

cations can reside in separately compiled modules.

Fortunately, there is a simple workaround. Changing

the representation of sumtypes a little bit is a quick

modification of the compiler. Because constant con-

structors can be encoded as empty blocks (the tag of

the block coding the constructor), we uniformly repre-

sent sumtypes by blocks 3. This avoids the multiplic-

ity of representations for the same type that caused

types reconstruction errors. Although this is achieved

by a slight modification of the compiler, this somehow

betrays the spirit of the back-end approach.

8.2 Types propagation
The retyping of the Clambda intermediate language is

not accurate enough, entailing costly data structure

allocation (object arrays). Data access is slowed down

by dynamic typechecking and boxing operations. Re-

trieving exact types allows to compile data to ade-

quate representations: for instance each constructor

of a given sumtype can be implemented as an ob-

ject with fields holding the parameters of construc-

tor, with their exact types. We propose to modify

the implementation of O’Caml in order to propagate

typing information along intermediate languages from

the type-checking step until the Clambda code. Main-

taining OCamIL up to date with the latest O’Caml re-

lease will be harder because types are likely to evolve

along with O’Caml development, but as explained in

the previous subsection a strict back-end implemen-

tation quickly reaches its limits anyway. Future work

will focus on implementing and exploiting type prop-

agation, and we expect important performance im-

provements. Type propagation also has applications

in debugging O’Caml programs, because the gener-

ated CIL will have more adequate types with respect

to the O’Caml source program.

9. CONCLUSION
Java’s success has popularized bytecode-based run-

timesthat offer modern techniques to improve safety,

such as typed bytecode, garbage collection and built-

in security policies. The .NET CLR is based on a

3A more complex policy can be imagined for sumtypes: rep-
resented by integers if made of constant constructors only,
and represented by blocks otherwise. However this is not ap-
propriate for O’Caml polymorphic variants which can be in-
crementally extended, for example by adding a non constant
constructor to a set of constant constructors.

similar design, and tries to improve security. These

two platforms help portability, interoperability and

offer a convenient target for compiler implementors.

The OCamIL project helps to evaluate the .NET plat-

form and the O’Caml implementation with respect to

each other. The .NET CLR is presented as a runtime

of choice to run multi-languages applications, which

implies a stricter control over pieces of code and the

addition of new features to the execution platform, in

order to support more programming features. How-

ever, these efforts have been mainly object-oriented:

originally for C#, Visual Basic and C++. Logical

and functional paradigms are not natively supported.

Closures and advanced flow-control (even exceptions)

implementation is too costly. Likewise, parametric

polymorphism does not fit well in the object models

of today’s runtimes. Fortunately, there are promising

developments towards these directions (such as ILX

and generics).

Symmetrically, language implementations need to ad-

apt to new runtimes. Compiling to a typed virtual

machine raises new issues that were not relevant in

dedicated functional virtual machines [19]: now type

information is needed down to bytecode generation.

To address efficiency issues, types have to be as ac-

curate as possible, ideally by propagating the static

type-checking step information. Appel’s slogan “Run-

time Tags Aren’t Necessary” [20] does not hold any-

more.

For the sake of compatibility and front-end indepen-

dence, OCamIL has adopted a back-end approach

that leads to retyping an intermediate language from

scratch. We are currently developing an alternative

implementation which retrieves source types from the

O’Caml type-checking step. The solution needs to

modify the implementation of O’Caml in order to

propagate typing information along intermediate lan-

guages from the type-checking step until the Clambda

code, which is successfully experimented with the de-

velopment version of OCamIL.

Despite these inadequacies, the .NET platform has

proven to be an interesting framework to develop a

compiler for. The OCamIL compiler and toplevel al-

low the development of O’Caml applications for the

.NET platform, with the guarantee of compatibility

with O’Caml (including advanced programming fea-

tures) and managed CIL code production. Other .NET

languages can consume O’Caml components, for in-

stance the OCamIL toplevel can be embedded inside

a C# application, to produce dynamically compiled

O’Caml code.
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